- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0001000004000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Peres, Yuval (5)
-
Ranade, Gireeja (4)
-
Kostina, Victoria (3)
-
Sellke, Mark (3)
-
Fanti, Giulia (1)
-
Holden, Nina (1)
-
Lyons, Russell (1)
-
Sun, Xin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Kostina, Victoria; Peres, Yuval; Ranade, Gireeja; Sellke, Mark (, IEEE Transactions on Information Theory)
-
Lyons, Russell; Peres, Yuval; Sun, Xin (, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques)null (Ed.)
-
Fanti, Giulia; Holden, Nina; Peres, Yuval; Ranade, Gireeja (, Proceedings of the National Academy of Sciences)Motivated by applications in wireless networks and the Internet of Things, we consider a model of n nodes trying to reach consensus with high probability on their majority bit. Each node i is assigned a bit at time 0 and is a finite automaton with m bits of memory (i.e., states) and a Poisson clock. When the clock of i rings, i can choose to communicate and is then matched to a uniformly chosen node j. The nodes j and i may update their states based on the state of the other node. Previous work has focused on minimizing the time to consensus and the probability of error, while our goal is minimizing the number of communications. We show that, when , consensus can be reached with linear communication cost, but this is impossible if . A key step is to distinguish when nodes can become aware of knowing the majority bit and stop communicating. We show that this is impossible if their memory is too low.more » « less
-
Kostina, Victoria; Peres, Yuval; Ranade, Gireeja; Sellke, Mark (, 2018 IEEE Conference on Decision and Control (CDC))
An official website of the United States government
